Problem 1

Find all functions f such that f^{\prime} is continuous and

$$
[f(x)]^{2}=100+\int_{0}^{x}\left\{[f(t)]^{2}+\left[f^{\prime}(t)\right]^{2}\right\} d t \quad \text { for all real } x
$$

Solution

In order to remove the integral, we have to differentiate both sides with respect to x and make use of the fundamental theorem of calculus, namely that

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

We get

$$
\begin{aligned}
\frac{d}{d x}\left\{[f(x)]^{2}\right\} & =\frac{d}{d x}\left\{100+\int_{0}^{x}\left\{[f(t)]^{2}+\left[f^{\prime}(t)\right]^{2}\right\} d t\right\} \\
2 f(x) f^{\prime}(x) & =0+[f(x)]^{2}+\left[f^{\prime}(x)\right]^{2}
\end{aligned}
$$

Move all terms to one side.

$$
\left[f^{\prime}(x)\right]^{2}-2 f(x) f^{\prime}(x)+[f(x)]^{2}=0
$$

Factor.

$$
\left[f^{\prime}(x)-f(x)\right]^{2}=0
$$

So then

$$
\begin{aligned}
f^{\prime}(x)-f(x) & =0 \\
f^{\prime}(x) & =f(x) \\
\frac{d f}{d x} & =f .
\end{aligned}
$$

Separate variables.

$$
\begin{aligned}
\frac{d f}{f} & =d x \\
\ln |f| & =x+C
\end{aligned}
$$

Exponentiate both sides.

$$
\begin{aligned}
|f| & =e^{x+C} \\
f(x) & =A e^{x}
\end{aligned}
$$

To determine the constant of integration, note that if we plug in $x=0$ in the starting equation, the whole integral disappears, leaving $[f(0)]^{2}=100$. This means that $A^{2}=100$, or $A= \pm 10$. Therefore,

$$
f(x)= \pm 10 e^{x}
$$

